
Flexible Computational Environments for
Model Calculations in Particle Physics

Gerard Jungman

January 2000

Abstract

I describe some ideas for creating tools to simplify calculations in par-
ticle physics models. Most statements made apply in a more general con-
text. The goal is to create a system which is flexible enough to support
exploratory computations, where the methods and strategies implemented
could vary as late as run-time; I will discuss what is meant by this. This goal
is not profound and could certainly be achieved in the near term; therefore,
the problem appears to be more sociological than technical. I also make
some comments about the role of simplified and standardized environments
in streamlining research communication.

1 The Problem

For purposes of this discussion we can define “calculation” by example; the spe-
cific examples I have in mind are generic computations of typical particle prop-
erties, such as cross-sections and branching ratios, computations of cosmological
interest, and computations of more detailed type, including Monte Carlo event
generation. The flavor of all these calculations is that one “has a given model”,
specified by a particle spectrum and couplings, and needs to “make predictions
for experiments”, where the details of what calculations are to be done, how they
are to proceed, etc., may be decided as late as run-time and should not affect the
overall organization of the system. We might call this sort of task “plot-making
physics”, since the visible end product is often a set of plots which can be used in
reports to other groups and funding agencies.

1



Typically, the need for such calculations is greatest in small experimental
groups, who find it necessary to calculate properties of models for comparison
with data, but who do not have experts or large support teams on hand to provide
needed technical information. In such situations there tend to be long and costly
startup times involved in building expertise locally, typically in the form of grad-
uate students who are forced to engage in tedious tasks such as setting up poorly
documented and barely usable software for calculations. Often such software was
created by theorists and was never designed to be usable by third parties. (I should
say immediately that this is not an attack from the Platonic realm; I have created
such half-baked software myself and admit my guilt.)

It has often been observed that the level of complexity in this sort of software
setup task is much too high. Such software is meant encapsulate a certain amount
of expert knowledge and needs to be effective in at least the following ways.

• The build process should be very easy and standardized.

• It should not require a user who is a problem-domain expert.

• It should export good abstractions, and at the right level of abstraction.

• It should be anopensystem.

• The time investment required to produce results should be minimum.

If the software can successfully give the non-expert user a running start, then
it can significantly reduce the human energy devoted to this sort of task. The
danger is that the created sofware systems tend to be monolithic, inextensible,
and difficult to integrate with other systems. This has been the case historically.
Note that monolithic systems are often difficult to test as well, since they are hard
to instrument and there is no interface to parameters at intermediate levels.

2 What Can Be Done?

First, much would be accomplished if software producers in this area followed
some standard software paradigms. For instance, the issues listed above could be
addressed by the following.

• Use a standard build environment; GNU-autoconf-automake is far from per-
fect, but should be acceptable is most cases.

2



• Providelibraries with clearly documentedinterfacesfor manipulating the
elements of the problem domain. Do not just create code which is run to
produce a result, because it is never clear how to modify or extend such pro-
grams or what the dependency relations are between components (assum-
ing that identifiable components can be found at all). Furthermore, well-
designed component libraries can be used together, in ways that were not
necessarily anticipated by the authors.

• Provide good documentation at all levels of usage.

• Expend effort on the design if the system; the time spent on software design
is typically insufficient; software isnot trivial.

• Design for extensibility from the start. Ask yourself what you might like to
do in the future.

• Provide test cases and examples. Provide a clear route to some form of
result, even if it is not the most general result obtainable with the tool.

If the producer is a large scientific software “house”, such as a computational
division at a national laboratory, they are usually aware of these issues (although
awareness does not guarantee success). However, the typical producer, often a
theorist who creates the software in order to compute results for a research pa-
per, does not have experience with or interest in creating good software. This is
unfortunate and will change only if such producers change their culture. Later, I
discuss why this culture change is important and desirable from the viewpoint of
research communication.

3 What More Can Be Done?

The problems of flexibility and extensibility in scientific software systems have
been addressed directly in recent times. Work in some communities has evolved
a paradigm, wherein calculations are controlled through scripting language inter-
faces. I think this approach is very promising, and I will describe it in some detail
below. It is worth saying at the outset that the idea of scripting in special-purpose
application domains is not new; what is new is the availability of generic, simple,
and well-documented scripting language environments with which to implement
such systems.

3



We can operationally define a scripting language to be a language which is
very high-level, is interpreted or possibly byte-compiled, supports late-time bind-
ing, is platform-independent from the user’s point of view, is extensible, and typ-
ically comes with a large library of useful tools and abstractions, including ab-
stractions over standard system services. One speaks of the scripting language
environmentwhen considering the language together with the rules for building
extensions, the conventions about library components, etc. As examples, both
Perl andPython satisfy this definition.

In the scientific computing community,Python is rapidly becoming the script-
ing language of choice because of its simple and consistent design. Without fur-
ther discussion, and when specifics of the scripting environment are required, I
will restrict attention toPython .

Scripting has several immediate benefits.

• Because the scripting environment requires well-defined specification of the
interfaces, the interfaces must be thought-out.

• It can be easy to make components work together, avoiding bulky IO code
which might otherwise be required. Recall that IO code is often messy and
confusing, and it typically requires tedious error checking, which is itself
prone to error.

• Users can compose different components together easily and rapidly. In this
way they can often tell very early what is going to work and what is not.

The first point is not often emphasized in software circles because the importance
of good interfaces is fairly well understood there. However, I think it may be the
key point when discussing how to improve tools created by scientists.

4 The SPF Framework

Off and on over the last two years, I have done some work on a system for use
in a relatively restricted problem domain. This is the domain of supersymmetric
models, with explicit focus on cosmological predictions. This is a problem do-
main where I have some experience and expert knowledge. At various times I
have attempted to create software which carries some of that expert knowledge.
The historical source of this effort was a small collection of private codes, creat-
ed in the old paradigm, which were not initially intended to be publicly released.

4



As such, they suffered from the usual diseases of inflexibility and obscurity. The
code was hard to build, hard to use, could not be used outside the intended modes
of operation, and was released asNeutdriver 1.x . Eventually I decided to
simplify the code base by removing several inflexible “features”, i.e. the ability
to compute in certain restricted model types. The resulting code was released as
Neutdriver 2.x , and is the currently extant version. The latest version in-
cludes a GNU-autoconf based build, which probably does more to decrease the
usage barrier than any other change I could have implemented.

The new system which I am in the process of creating, calledSPF, does not
extend the physics capabilities ofNeutdriver at all, but is instead a complete
redesign, with explicit concern for usability and flexibility. It is based on the
simple idea that only users really know what it is that they want to do, and the best
thing that I can do is to create a set of useful components and a system for sewing
them together.

The central modules labelled Accelerator Physics and Detection Methods are
supposed to be illustrative of a set of specific computational modules, which can
be loaded as needed. The module architecture is intended to be simple enough
that anyone interested in creating a special purpose module can do so, once in
possesion of a baseline ability to create a small library, either in the scripting
language itself or in a compiled language, say in C or C++. Such modules should
be easy to distribute as well, so that users can share what they create.

On the other hand, users who are not interested in creating their own modules
need not be exposed to those issues. They can simply choose among the provid-
ed standard modules and build computations of interest by writing small scripts.
Such small scripts would be the semantic equivalent of the pseudo-code below.

load module_for_model_specification
load module_for_computing_result_1
load module_for_computing_result_2
...
parameter_1 = 1.0
parameter_2 = 5.0
for parameter_3 in (1.0 .. 10.0)

m = create_model(parameter_1, parameter_2, parameter_3)
result_1 = compute_result_1(m)
result_2 = compute_result_2(m)
...
print result_1, result_2

5



end

Almost anything which depends on specification of a model instance could
be a module. For example, it should be fairly easy to take current Monte Carlo
event generators, provide them with a scripting language interface which accepts
model specification data, and thus make them available for use along with other
components.

Furthermore, one can equally well imagine modules for handling post-processing
of data. Post-processing is even more likely to be user-dependent than the direc-
t calculational components, since each user is interested in something different.
One then imagines something like the following,

load my_module_for_post_processing
load module_for_model_specification
load module_for_computing_result_1
load module_for_computing_result_2
...
parameter_1 = 1.0
parameter_2 = 5.0
for parameter_3 in (1.0 .. 10.0)

m = create_model(parameter_1, parameter_2, parameter_3)
result_1 = compute_result_1(m)
result_2 = compute_result_2(m)
...
my_post_processing(result_1, result_2)

end

wheremy module for post processing is a locally created and maintained
module for reducing the output in some fashion without creating prohibitively
large intermediate data sets.

5 Why Bother?

Many physicists have sympathy for creating a foundational system as described
above. However, I think it is fair to say that the revolution has not yet begun.
Most theorists or small experimental groups engaged in this sort of exploratory
“plot-making physics” need to produce resultsright nowand do not feel that they
have the time to think about the problems in an abstract way. Most theorists who

6



produce software which winds up in the hands of the needy show little regard for
usability, flexibility, or other “software” issues; of course, their position can be
justified by the practical observation that for the most part they have never learned
much about these issues and would not know how to proceed.

So where do we find the motivation for changing the culture, in order to break
out of this metastable state? I think this motivation lies in the will to communicate
effectively. Whatever one feels about the situation, “publish or perish” remain-
s the driving evolutionary pressure in the world of ideas. Ideas which are not
properly communicated and used by others are doomed, the authors of the ideas
presumably doomed along with them. Any tool which increases the efficiency of
communication must become indispensable in this market of ideas.

Consider two papers representing (perhaps only slightly) different models or
methods for calculating in certain models. Both contain some theoretical descrip-
tion, at a level of detail which makes it possible (though usually not easy) for a
sufficiently motivated student to reproduce the results. Both present some partial
results, say in the form of a collection of plots at the end of the paper. Which of
these has the greater chance to become important and propagate itself? I think it
is clear that the winning idea is the one which is able to make itself more user-
friendly to the community of consumers. User-friendliness here includes clear
textual discussion, clear mathematical discussion, and the ability to empower the
non-expert reader, providing a short and quick path to results.

In many cases, software can be an excellent tool to empower the reader. If
I want to see what happens when some parameterλ equals 5.0, but the authors
provided partial results, say only forλ = 1.0, I am typically stuck. There is
no way to turn theλ dial on a plot in the back of the paper. Even if one can
digest the discussion in the text and thereby make some guess as to what happens,
the loss of immediate feedback is usually crippling. The digestion process takes
time, ambiguities are usually unavoidable, and nagging doubts impede progress
(is that factor of 2 in equation 3.1 a typo or not?). However, if the author provided,
instead of the plots at the back of the paper, software for creating the plots which
was sufficiently usable, I could generate the plots I wanted in short order and have
immediate feedback about my own thoughts. In this way, the software becomes a
kind of inexpensive and lightweight carrier of the expert-knowledge of the author.

Another important issue for scientific software is the effectiveness of the re-
view process. The review process not only formalizes acceptance of results but
also formalizes the process of understanding. In principle this should force au-
thors to create understandable and usable computational tools. In practice authors
rarely go out of there way to do so, and reviewers throw up their hands in despair

7



when faced with results which depend on some cryptic software, possibly not even
made available to the reviewer or the public.

The resistance to creating good tools fills the spectrum from logical and prac-
tical argument to fear and greed. Possible responses include

• “That sounds great. What should I do?”

• “I don’t have time for that. It’s not my job. I’m not interested.”

• “But then you would find all the mistakes I made.”

• “It’s not ready yet.”

• “It’s mine. I write papers with it. You can’t have it.”

• “It’s a secret.”

I have, in one form or another, heard all of these responses. Though amusing at
first, the phenomenon eventually becomes tedious.

Convincing authors to take seriously their role as tool-producers is clearly a
difficult problem which will not be solved by technical means. However, it is
possible that if we create a usable infrastructure, or even just a good model for
such tools, progress will be measurably accelerated.

A friend once described a behaviour he called “flag-throwing”. Flag-throwing
is when, instead of climbing the mountain to plant the flag, authors stand at the
base of the mountain and try to throw the flag onto the summit. Since being first
to the top is all-important, and there is little overhead in trying a couple times to
throw the flag, it is a common practice; sometimes it succeeds. I think that, in a
very real sense, a research paper which does not empower the reader by providing
useful tools reduces to a kind of flag-throwing activity. Perhaps it is an effective
tactic in an unfriendly world. But if we accept that, then perhaps it is time to give
up our fantasies about research communication once and for all.

8


